Calorimetry Questions and Problems

1.	The specific heats of water and iron are 4.184 J/g°C and 0.44 J/g°C respectively. Which substance will experience larger temperature increase upon adding 10 J? Assume each sample weighs 5 grams. (0.478°C; 4.54°C)
2.	How much energy is required to heat 120.0 g of water from 2.0 °C to 24.0 °C? (11.05 kJ)
3.	If it takes 41.72 joules to heat a piece of gold weighing 18.69 g from 10.0 $^{\circ}$ C to 27.0 $^{\circ}$ C, what is the specific heat of the gold? (0.131 J/g $^{\circ}$ C)
4.	A certain mass of water was heated with 41,840 Joules, raising its temperature from 22.0 °C to 28.5 °C. Find the mass of water. (1538.5 g)
5.	The number of Joules needed to raise the temperature of 100 grams of water 10 °C. is the same as the number of Joules needed to raise the temperature of 1000 grams of water (a) 1 °C (b) 0.1 °C (c) 10 °C (d) 100 °C
6.	10.0 g of a fuel are burned under a calorimeter containing 200.0 g of H_2O . The temperature of the water increases from 15.0 °C to 55.0 °C. Calculate the total heat produced (in joules) and the heat of combustion per gram of fuel. (3347.2 J/g)
7.	It takes 333.51 joules to melt exactly 1 gram of H_2O . What is the <i>molar</i> heat of fusion (melting) for water, from this data? (6.0 kJ/mol)

а

8.	When solid ammonium chloride (NH $_4$ Cl) dissolves in water, it breaks apart into aqueous ions and the water temperature drops. The Δ H of solution for this process is +20 kJ/mol. How many grams of ammonium chloride must be added to 100.0 grams of water to bring about a 5°C decrease? (5.35 g)						
9.	An ace chemistry student conducts an experiment to determine the Δq for the reaction of calcium metal with HCl. H data is summarized in the table below:						
	mass of water in calorimeter	=	123.50 g				
	heat capacity of calorimeter	=	25 J/ ^O C				
	initial temperature of water	=	20.4 °C				
	final temperature of water mass of Ca	= =	28.8 ^O C 5.20 g				
(a) Calculate the total heat (in kJ) released by this reaction.							
(b) Calculate the ΔH for this reaction. Report your answer in kJ/mol Ca reacted.							
10. When 80.0 grams of a certain metal at 90.0°C was mixed with 100.0 grams of water at 30.0°C, the final equilibrium temperature of the mixture was 36.0°C. What is the specific heat (J/g°C) of the metal?							
11.	Calculate the specific heat of a metal if a 55.0 rise when added to 225.0 g of water at 22.0°C		an unknown metal	l at 99.0°C causes a ′	l.7°C temperature		
12.	Why does moisture condense on the outside	of a glass of c	cold water?				
13.	Why does alcohol at room temperature feel co	poler to the to	uch than does wa	ater at the same temp	erature?		